Classification of uncertain and imprecise data based on evidence theory
نویسندگان
چکیده
In this paper, we present a new belief c K neighbor (BCKN) classifier based on evidence theory for data classification when the available attribute information appears insufficient to correctly classify objects in specific classes. In BCKN, the query object is classified according to its K nearest neighbors in each class, and c K neighbors are involved in the BCKN approach (c being the number of classes). BCKN works with the credal classification introduced in the belief function framework. It allows to commit, with different masses of belief, an object not only to a specific class, but also to a set of classes (called meta-class), or eventually to the ignorant class characterizing the outlier. The objects that lie in the overlapping zone of different classes cannot be reasonably committed to a particular class, and that is why such objects will be assigned to the associated meta-class defined by the union of these different classes. Such an approach allows to reduce the misclassification errors at the price of the detriment of the overall classification precision, which is usually preferable in some applications. The objects too far from the others will be naturally considered as outliers. The credal classification is interesting to explore the imprecision of class, and it can also provide a deeper insight into the data structure. The results of several experiments are given and analyzed to illustrate the potential of this new BCKN approach. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Airline Alliances Partner Selection in Uncertain Environment: A Fuzzy Hybrid Evaluation Model Based on BSC
With respect to the importance of commercial alliances in airline hypercompetitive environment, partner performance evaluation is a critical matter before making any decision about partnership. In this article, utilizing Fuzzy theory, a hybrid airline evaluation model is developed in a way that all airline performance strategic dimensions are considered, as well as, it can deal with qualitative...
متن کاملA Bayesian mixture model for classification of certain and uncertain data
There are different types of classification methods for classifying the certain data. All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data. In recent years, by assuming the distribution of the uncertain data is normal, there are several estimation for the mean and variance of this distribution. In this paper, we co...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملRobust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based ...
متن کاملBankruptcy Assessment with the Interval Programming and Games Theory
Some of the parameters in issues of the reality world are uncertainty. One of the uncertain problems with the qualitative parameters is economic problems such as bankruptcy problem. In this case, there is a probability of dealing with imprecise concepts including the intervals regarding the official’s viewpoint, organizations’ managers. Accordingly, this article uses the concepts of data envelo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 133 شماره
صفحات -
تاریخ انتشار 2014